Continuous and Inverse Shadowing for Flows

نویسنده

  • Piotr Kościelniak
چکیده

We define continuous and inverse shadowing for flows and prove some properties. In particular, we will prove that an expansive flow without fixed points on a compact metric space which is a shadowing is also a continuous shadowing and hence an inverse shadowing (on a compact manifold without boundary).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous Inverse Shadowing and Hyperbolicity

We study the concepts of continuous shadowing and continuous inverse shadowing with respect to various classes of admissible pseudo orbits, and characterize hyperbolicity and structural stability using the notion of continuous inverse shadowing.

متن کامل

On the Periodic Orbits, Shadowing and Strong Transitivity of Continuous Flows

We prove that chaotic flows (i.e. flows that satisfy the shadowing property and have a dense subset of periodic orbits) satisfy a reparametrized gluing orbit property similar to the one introduced in [7]. In particular, these are strongly transitive in balls of uniform radius. We also prove that the shadowing property for a flow and a generic time-t map, and having a dense subset of periodic or...

متن کامل

On Periodic Shadowing Property

In this paper, some properties of the periodic shadowing are presented. It is shown that a homeomorphism has the periodic shadowing property if and only if so does every lift of it to the universal covering space. Also, it is proved that continuous mappings on a compact metric space with the periodic shadowing and the average shadowing property also have the shadowing property and then are chao...

متن کامل

THE CHAIN PROPERTIES AND LI-YORKE SENSITIVITY OF ZADEH'S EXTENSION ON THE SPACE OF UPPER SEMI-CONTINUOUS FUZZY SETS

Some characterizations on the chain recurrence, chain transitivity, chain mixing property,shadowing and $h$-shadowing for Zadeh's extension are obtained. Besides, it is provedthat a dynamical system is spatiotemporally chaotic provided that the Zadeh's extensionis Li-Yorke sensitive.

متن کامل

Weak Inverse Shadowing and Genericity

We study the genericity of the first weak inverse shadowing property and the second weak inverse shadowing property in the space of homeomorphisms on a compact metric space, and show that every shift homeomorphism does not have the first weak inverse shadowing property but it has the second weak inverse shadowing property.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004